报告题目:Neighborhood conditions for hamiltonicity of K1,4-free graphs
主讲人:尚王毅
报告时间:10月19日 10:00-10:30
报告地点:西安电子科技大学南校区会议中心B101报告厅
In this talk, we focus on extending a sufficient neighborhood condition for hamiltonicity of claw-free graphs due to Asratian, Broersma, Van den Heuvel and Veldman to $K_{1,4}$-free graphs. Let $k$, with $2\leq k\leq 3$, be an integer. We are interested in the smallest value of %the integers
$k$ such that a $k$-connected $K_{1,4}$-free graph $G$ is hamiltonian if for every pair of vertices $u,v$ with $d(u,v)=2$, $|N(u)\cap N(v)|\geq 2$. We prove that if $k=2$, then either $G$ is $1$-tough or $G\in\mathcal{J}_1\cup \mathcal{J}_2$, and if $G$ satisfies a different connectivity condition (but implying $k=3$), then $G$ is hamiltonian.
尚王毅,西北工业大学博士生,导师是张胜贵教授。目前主要从事局部条件下图的Hamilton性质及相关问题的研究工作。